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Adaption Based on Multidimensional Residual

Minimization
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An automated anisotropic unstructured mesh adaptation strategy is proposed, imple-
mented, and assessed for the discretization of viscous flows. The adaption criteria is based
upon the minimization of the residual fluctuations of a multidimensional upwind viscous
flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid
points than gradient based adaption, naturally aligning mesh edges with discontinuities
and characteristic lines [Wood, ATIAA 99-3254]. The adaption utilizes a compact stencil
and is local in scope, with four fundamental operations: point insertion, point deletion,
edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is
performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The
results demonstrate that the strategy suffers from a lack of robustness, particularly with
regard to alignment of the bow shock in the vicinity of the stagnation streamline. In
general, constraining the adaption to such a degree as to maintain robustness results in
negligible improvement to the solution. Because the present method fails to consistently
or significantly improve the flow solution, it is rejected in favor of simple uniform mesh

refinement.
Nomenclature Superscripts:
ff, A Flux Jacobian in conserved or auxiliary variables ()T Transpose
a Speed of sound ()Y Viscous component
F Flux of conserved quantities ()Y Spatial component of a vector
I Identity matrix )
7,7  Cartesian unit vectors Subscripts:
¢ Edge length ()i Node number
M  Upwinding matrix ()1 Triangle
n Outward-normal unit vector Lo . ) o
P Pressure Over-bars indicate linear averages and tildes indi-
S Area cate average values assuming linear variation of the
S Entropy: ds = dp — dP/a? parameter vector.
T Temperature Variables lacking explicit dimensions are in nondi-
U Conserved variables mensional form, normalized by the free stream values
u,v  Velocity components of density, velocity, viscosity, and temperature along
I_/: Velocity vector with a characteristic length, as appropriate.
W Auxiliary variables: dW = (ds, pdV ,dP) .
xz,y Cartesian coordinates Ir%trO(‘iuc‘tlon
7 Parameter vector: /p(1,u, v, H) HOMAS et al.! identify viscous flow unstructured
- Y ) ) . o, .
o, 8 Generalized wave speeds in &, directions mesh adaptation as a critical enabling technology
v Ratio of specific heats for the inclusion of high fidelity computational fluid
¢ Curvilinear coordinate on triangle edge 12 dynamics in the vehicle design cycle. The development
n Curvilinear coordinate on triangle edge 23 of robust automated unstructured grid generation and
0 Minimization functional adaption methods will directly reduce the time re-
b (Z) Fluctuation in conserved or auxiliary variables quired for both the initial grid generation for complex
p’ Density vehicles and the solution computation for complex flow
= Functional weighting matrix fields. Notable achievements in this field of unstruc-
Q Integration element tured mesh adaption have recently been demonstrated
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by Venditti and Darmofal,? using adjoints to optimize
the mesh distribution, and by Habashi et al.,>* using
anisotropic feature adaption.

Concurrent work in flow solvers for hypersonic
aerothermodynamic applications has shown promise

1 0F9

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003-3824



for nonlinear multidimensional upwind fluctuation
splitting schemes as being more accurate and less
grid sensitive than traditional locally one-dimensional
flux splitting schemes.>” Unstructured mesh adap-
tion based upon the minimization of the fluctuation
splitting distribution has shown some remarkable nat-
ural alignment properties for linear®® and nonlinear!®
model problems, but has not been demonstrated for
the full system of equations for viscous fluid dynam-
ics. Alignment of the mesh to the bow shock has been
shown to be a critical factor in the accuracy of hy-
personic solutions,!' and the successful extension of
the natural alignment tendency inherent in fluctuation
minimization to a high speed fluid dynamics capability
could be the desired breakthrough to the cost barrier
of including computational fluid dynamics in the vehi-
cle design cycle.

This paper presents an automated anisotropic un-
structured mesh adaption process based upon the
minimization of distributions for a nonlinear multidi-
mensional upwind fluctuation splitting scheme. The
adaption is local in scope and thus convenient to par-
allelize. The demonstration case is for perfect gas
two-dimensional Mach-10 flow over a sting-mounted
entry capsule profile.

Flow Solver

The flow solver is a nonlinear monotone second-
order accurate multidimensional upwind fluctuation
splitting scheme as introduced by Sidilkover!'? with ex-
tensions to viscous flows.!® The solver produces exact
convective solutions along characteristics on unstruc-
tured grids where one edge of each cell is aligned with
the cell-averaged transport direction.'® This character-
istic alignment property of the flow solver is the basis
for driving the mesh adaption strategy described in the
following section. Traditional locally one-dimensional
flux splitting solvers do not share this method-of-
characteristics property.

While a full description of the second-order accu-
rate viscous flow solver is available in Ref. 6, including
verification and validation results, the first-order dis-
cretization is briefly sketched here to provide context
for the residual derivatives that follow in the adapta-
tion section. The equations of motion are written in
vector form as

U =-V-F+V-F" (1)

where F' and FV are the inviscid and viscous fluxes
and U is the vector of conserved variables. Integrat-
ing over a triangular element, Figure 1, the right-hand
side (RHS) can be expressed in terms of inviscid and
viscous fluctuations, ¢ and ¢?, as

mm:_/ﬁﬁm+/ﬁﬁwﬁzmw”@)
9] Q

Fig. 1 Elemental triangular domain for fluctuation
splitting.

The viscous fluctuation is assembled from contribu-
tions associated with each node of the triangle,

oSS
i

3

¢' =y ¢! and  ¢'=_F"n;  (3)
i=1

The edge of the triangle opposite to node 7 has length

¢; and outward unit normal 7i;.

Expressing the inviscid flux in terms of its Jacobian,
dF = /de, the inviscid fluctuation can be decom-
posed along two edges of a triangle, denoted ¢ for 12
and 7 for 23, as

b = +on (@)
1 5~ 1 o~
¢£ = —iélﬁlA AgU, ¢77 = §£3ﬁ3AAT]U (5)

A transformation to auxiliary variables, dU = Uy dW,
simplifies the expression for the Jacobian,

¢ =Uwo (6)
6 =+ =—a AW -BAW (1)
with
1 00 fi
u 1 0 U
Uv =, 0 1 %U (8)
VT2 u v ’yil%
1 . 0= 1 . =
a = 551”1'./4, B = —§£3ﬂ3'¢4 (9)
and
0 O 0 O
- — 0 O 0 1
A=VI+ 0 0 IR (10)
0 a% a%j 0

Upwinding is achieved through the introduction of
an artificial dissipation fluctuation,

9

& =sign(in-A)d, ¢ = sign(—ng-A)g" (11)

which is linearly combined with the basic fluctuation
to complete the inviscid contribution to the nodal up-
dates.
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Adaption Strategy

The present adaption strategy for two-dimensional
unstructured meshes with triangular elements is local
in scope and allows anisotropic stretching. Adaption
cycles are performed as sequential sweeps over the
domain performing the basic operations: node dele-
tion, edge swapping, nodal displacement, and node
insertion. The process is automated and a variety of
stopping criteria can be considered, such as a maxi-
mum grid size, total number of cycles, or minimum to
maximum residual ratio.

A node is marked for deletion if the fluctuations,
both inviscid and viscous,? in all surrounding cells are
below a threshold. The threshold is customizable, and
a typical choice would be 2-3 orders of magnitude be-
low the average nodal value. A trial reconnection of
the mesh is proposed without the node and the ele-
ment fluctuations are recomputed, from the existing
solution, to verify that the fluctuations remain small.
If so, the node deletion is finalized.

A node is added at the midpoint of an edge, creating
two more cells and three more edges, if the fluctuations
in the cells to either side of the edge exceed a threshold.
When comparing cell fluctuations, the Lo-norm of the
fluctuations from each of the governing equations are
used, weighted by the inverse of the square root of the
cell area.

Edges are flagged to be swapped when the root mean
square (RMS) of the fluctuations in the cells to either
side are excessive. If the swapped edge maintains a
valid grid then the RMS of the fluctuations is recom-
puted, and the swapped configuration is retained if the
RMS has decreased.

Nodal displacements are driven by the minimiza-
tion of a functional that can be expressed in terms of
either the conserved or auxiliary fluctuations, as the
minimization of one implies the minimization of the
other. Because the goal of the nodal displacements is
to achieve alignment of the mesh with inviscid disconti-
nuities and characteristic lines, the viscous fluctuation
is omitted from the displacement functional.

The nodal displacement functional is constructed for
each node 7 as

1 D
T; = §ZF:¢$:T¢T: (12)

where the summation is over all triangles connected at
node ¢ and = is the weighting matrix. The derivatives

aThe sum of the absolute values of the viscous distributions
is used, as the net cellular viscous fluctuation is identically zero.

of T are formed using the chain rule as

CNT
oY; 1 8¢T v uTaaT o
0 — 3 ET ( ) :T¢T+¢T8—%¢T

y (13)
D
+ QST fay 8:1; )
and
oY; 1 ot \ o=
oy 52 <8yj> EréT + o1 3 quST
! (14)
po 00t
+ o7z
PTET a0;

Having defined the gradient of the functional, the
method of steepest descent can be applied directly to
drive the nodal displacements.

The weighting factor Zt is a symmetric positive-
definite matrix. Weighting each equation equally with-
out regard to cell sizes results in =t = I, while an
inverse area weighting yields Zr = g-I. The deriva-
tives of Z1 for these and other area-weighted choices
are available in Ref. 14. The present study is con-
ducted using equal weighting.

The discrete cell fluctuation, Eqn. 7, can be equiva-
lently written as

o 1 LS
6 =5 Ling AW, (15)

where W; = Wz Z;. The summation is over the three
nodes defining the triangle.

The derivatives of the fluctuation with respect to
the movement of only one node, for example node 2 of
the triangle, are

aa—i = % AV (W, — W)
5 (16)
+j§3;zjﬁj (g—iwj +ﬁaazj> ,
and
g—i % A(W5 — Wh)
) (17)
+j§3:1£/] (g—iwj ;1%22)

The derivatives of the fluctuation with respect to
movements of node 1 or 3 of the triangle follow di-
rectly as cyclic permutations.
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The flux Jacobian in auxiliary variables, Eqn. 10,
has the approximate derivative

% ov
or =~ O

and similarly for the y derivatives. It is assumed that
moving a node does not change the solution at the
other two nodes of the triangle, so that the variation
of the cell-average flux Jacobian scales like one-third
the variation of the velocity at the node being moved,

=1, (18)

oA 1074

— —1. 1
61‘2 3 81’2 ( 9)

Similarly, the variation of the Jacobian of the trans-
formation scales like one-third of the nodal variation,
88% ~ %g—fﬁ, and is neglected as a sub-principle term
relative to the change in solution value,

OW; 07
8562 o WZ 8562 )

(20)

Since the solution is locally assumed to vary only at
the node being moved, i.e., 32 = 922 = (),

> —
z:: (93:

The remaining term to evaluate is 222 The steady-

state distribution of the residual ﬂuctuation to the
node can be written

(21)

S I +Ma)a— (I+Msg) B Wz 2

! => (I +Ma)aWzZy — (I + Mg) Wz 7],
(22)
or

S 0" - 84 Wy = (0 Wy 3 7).
T ! (23)

where
ot :%(]+Ma)a (24)
gt = % (I + M) 5. (25)

The upwinding matrices M, and Mg expressed in
auxiliary variables reduce to the identity matrix for
supersonic flow, see Ref. 13. Differentiating Eqn. 23
while freezing the Jacobians leads to

2
da™ @7)
=y 5. V2 (21 = Z2)
T LT
95+
_%WZ(Zg Zz)},

A similar expression can be formed for the y derivative.
Neglecting the subsonic blending on M, and Mg
allows ™ and 8T to be expressed as

a+:{g’ , B+:{B’ 96>0

0, V<0’
(29)
where V, = Vi, and Vs = V-iig.
follow directly,

Vo >0
Vo <0

The derivatives

dat I V)
— = Oz’ % 30
61‘2 { 0, Va SO ’ ( )
+ 98 vy
08T _ { payr V5 >0 (31)
Oxs 0, Vz<0
The derivatives of a and 3 are
do A 1, 0A
8—5172 = 5 + §€1n1-72, (32)
da A1 dA
— =——+4+ -l — 33
g Tz My (33)
aB A1, 04
8—372 = ? — 5(3”3'72, (34)
o A1 dA
— = —— — —f303-—. 35
Ao 2 277 By, (35)
Having determined ‘g—f;, ‘g—gz follows from
d —ud
gy = W/pu) —u (\/ﬁ)’ (36)
VP
and
d —vd
av = W/Pv) = vdlyp), (37)

NG

This completes the derivation of all the terms re-

Z dat 3/3+ Woly + ( B /3+) Wa 0Z> quired to evaluate the derivatives of the two-dimen-
= Bzs  Oxo za2 Z s sional objective function, Eqns. 13 and 14. Reference 6
St 08+ presents the analogous derivation in axisymmetric co-
= (— 771 — —WZZ3> , (26)  ordinates.
T 61‘2 61‘2
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Fig. 2 Computational domain for Mars Pathfinder
capsule.

Results
Case Definition

Evaluation of the adaption strategy for hypersonic
flow is simplified by choosing a two-dimensional lami-
nar perfect gas case. The test conditions and geometry
correspond to the Mach-10 wind tunnel tests of Hol-
lis.!® The sting-mounted capsule geometry, depicted
in Figure 2, is modeled as two-dimensional instead
of axisymmetric for the present study.” The orig-
inal axisymmetric wind tunnel model of the Mars
Pathfinder capsule consists of a spherically-blunted 70-
degree sphere-cone. The body radius is 1 in. and the

1 1

nose radius is 5 in. The shoulder radius is 30 in. and

the aft body angle is 40 degrees. The base radius is
% in. The sting is 4 in. long with a radius of % in.

The free stream conditions for the NASA Lang-
ley 31-Inch Mach 10 Air Tunnel, corresponding to
a nominal Reynolds number per foot of 0.5 x 108,
are: P =69 Pa, T =53 K, p = 0.0045 kg/m?, and
u = 1416 m/s. The wall temperature is taken to be
a uniform 300 K. Historical experience with this tun-
nel at these conditions indicates that laminar perfect
gas calculations are adequate for comparison with the
experimental data.

The metric for accuracy is chosen to be surface heat
transfer rates. The benchmark solution is obtained
using the cell-centered flux difference splitting second-
order accurate LAURA code of Gnoffo.'® A structured
grid with 125 stream-wise nodes and 513 nodes from
the surface to the outer boundary, for a total of 64,125
nodes, is used to generate the benchmark solution.
The grid is adapted for alignment with the bow shock
and clustered to the boundary layer. The benchmark
solution is shown to be grid converged on this mesh,
aside from small changes at the stagnation point, in

bReference 6 reports the axisymmetric results for this case,
with similar observed behavior and conclusions as for the two-
dimensional results, but with the added complexity of special
treatment for the axis singularity.

Ref. 6. The same reference also shows the grid conver-
gence of the present solver for this case using uniform
mesh refinement, converging in agreement with the
benchmark solution.

Adaption Component Evaluation

The individual adaption operations, deletion, swap-
ping, moving, and insertion, are first tested separately
to gage their relative merits. Each evaluation begins
from a converged solution on triangulations of coars-
ened versions of the structured LAURA grid. After
adaption the solution is re-converged. The adaptation
will be considered successful if the resultant surface
heat transfer rates are closer to the benchmark data.

For point deletion the starting mesh is a triangu-
lation of 125 x 257 structured grid, containing 32,125
nodes. The objective for successful point deletion is
to remove points without altering the solution. For
the first pass, the adaption is set to remove 10 per-
cent (3284) of the nodes, producing minimal change
to the solution. The nodes are predominantly re-
moved from the free stream. Then a further 10 percent
(3157) of the nodes are removed, and the heating
rates remain essentially unchanged, Figure 3, but the
fluctuation splitting scheme has trouble maintaining
the bow shock capture due to the further loss of free
stream points, as shown in Figure 4. The removal of
more points causes rapid solution deterioration as the
scheme fails to properly capture the bow shock on the
coarsened meshes.

For evaluating edge swapping the starting mesh is
formed from a triangulated 125 x 129 structured grid
with 16,125 nodes and 47,868 edges. Edge swapping
with the fluctuation minimization strategy is not ben-
eficial for this case. Only about 1 percent of the edges
are swapped, primarily at the shock, but the result-
ing solution does not converge due to ringing of the
bow shock near the stagnation point. Figure 5 shows
pressure contours in the stagnation point region over-
laid upon the swapped mesh. Notice the irregular
contours downstream of the shock. The difficulty in
this solution is that the bow shock is making discrete
jumps across grid lines, induced by swapped edges at
the shock. The unadapted bow shock more closely
follows the grid lines at the y = 0 symmetry plane.
Recall that this mesh was originally well-aligned with
the bow shock from the structured-grid solver, and the
effect of edge swapping on a more random unstruc-
tured mesh may be different. Also, on a finer mesh
the smaller grid spacing at the shock might lessen the
detrimental effects of discrete jumps in the shock loca-
tion. The edge swapping assessment is tried again with
more conservative thresholds, this time only swapping
half a percent of the edges, but still produces the same
disappointing results.

Nodal displacements are evaluated using the 16,125-
node mesh. The adaption moves 1827 nodes a total
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Fig. 5 Shock bulging at stagnation point after edge
swaps, pressure contours and grid.

distance of 0.7488 in., for an average of 0.0004 in. and
RMS of 0.0015 in. This level of movement represents
a perturbation to the mesh, with the average move-
ment being an order of magnitude smaller than the
edge lengths at the shock. The mesh movement occurs
at the shock, near the shoulder, and in the fore body
boundary layer. Surface heating rates for this case are
shown in Figure 6. The solution is worsened on the
fore body while not much change is seen in the wake.
Investigating the solution reveals that a wind side vor-
tex pattern has emerged, Figure 7, that is causing the
unexpected heat transfer rates on the heat shield. The
solution is run a further 800,000 iterations with no
change to this wind side vortex pattern. Note that the
solver includes eigenvalue limiting, which is known to
suppress the carbuncle phenomenon for the structured
grid Roe schemes. The wind side recirculation is not
a physically accurate prediction nor does it appear to
match the classic carbuncle pathology, but is rather
an artifact of discrete mesh point jumps in the bow
shock location, seen in Figure 7 as choppiness in the
bow shock contour lines. For this case the adaption
perturbs a mesh that was initially well aligned to the
bow shock in such a way as to largely destroy that
alignment, to the detriment of the solution.

Point insertion is tested on the unadapted 16,125-
node mesh. The adaptation adds 3299 nodes, approx-
imately a 20 percent increase, with heating results
shown in Figure 8. Many of these new points are added
to the wind side boundary layer. On the heat shield
the heating levels rise markedly toward the benchmark
result, but exhibit a high-frequency oscillation of sig-
nificant amplitude. There is little change in the wake
heating.

Full Adaption Cycle Evaluation

For the full adaption the starting solution is taken
on the triangulated 125 x 129 mesh with 16,125 nodes.
The intention is to look for an improvement in the
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coarse mesh solution without increasing the number of
1 nodes. Although not all of the component adaptation
L steps were seen to be beneficial, a complete cycle will
Y,in. | include each step to allow for synergism between the

components. The strategy for an adaption cycle is to
delete 10 percent of the nodes, swap 1 percent of the
edges, move 5 percent of the nodes, and then insert
back in 10 percent of the nodes. The solution is re-
converged between each step of the adaption cycle.
The fluctuation minimization adaption successfully
removes 1601 nodes, but runs into trouble again while
swapping. Wind side vortices are spawned in the stag-
nation region by an oscillating bow shock. In an effort
to damp the solution the CFL number is reduced by
X, in. an order of magnitude, without producing an improve-
ment in the solution or eliminating the vortices. The
number of edges to be swapped is then reduced to
% percent, but the same vortices and oscillating bow

05 —

Fig. 7 Wind Side vortices produced by nodal dis-
placements, streamlines and pressure contours.
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shock appear. To proceed with this case the edge
swapping is omitted entirely and the adaption cycle
continued with the nodal displacement step, where
706 nodes are moved a total distance of 0.7 in. Fi-
nally, 1638 nodes are added, yielding the results of
Figure 9. The fore body heating is generally im-
proved toward the benchmark solution, although there
is a high-frequency oscillation in the data starting at
s = 0.6. The aft body heating is improved to match
the benchmark between s = 1.2-1.8, although the orig-
inal solution was not far off from the benchmark in this
region. The sting heating is only slightly changed aft
of s=3.

Concluding Remarks

An anisotropic unstructured mesh adaption strategy
for hypersonic viscous fluid flows is presented. The
strategy is implemented for two-dimensional perfect

gas laminar physics as a prototype for the purpose of
assessing the benefits of the scheme prior to pursuing
in a three-dimensional reacting gas implementation.
The adaption criteria is based upon the minimization
of residual fluctuations defined by a multidimensional
upwind distribution scheme for the flow solver. Par-
ticular emphasis is placed on deriving the derivatives
of the nodal displacement objective function for the
upwind fluctuation splitting distribution algorithm.

The hypersonic demonstration case is a two-dimen-
sional sting-mounted capsule at laminar Mach 10 wind
tunnel conditions, modeled with perfect gas air. Sur-
face heat transfer is the quantity of interest used to
measure the success of the solution adaptive process.

Four elementary operations are performed during
the adaption: point deletion, edge swapping, nodal
displacement, and point insertion. The limits of ef-
fectiveness for each of the four operations is probed
independently to guide their relative weighting in the
full adaption strategy. Coarsening of the mesh works
well removing up to about 20 percent of the nodes, but
leads to a loss of the bow shock capture and a rapidly
deteriorating solution for more aggressive coarsening.
The other three adaption techniques generally have
minimal or negative impacts on the solution, with
the exception of point insertion where solution im-
provement occurs but at the cost of high frequency
oscillations. Overall a lack of robustness is demon-
strated, usually caused by distortions to the bow shock
near the stagnation point. Common failure modes are
an oscillating shock that sheds wind side vortices, or
a steady shock kink that produces unexpected pres-
sure contours and surface heating spikes. For the full
adaption cycle the fore body heating improves but be-
comes oscillatory, while the aft body and sting heating
predictions improve slightly.

One likely cause of the lack of robustness exhibited
by the adaption scheme at the stagnation point bow
shock is the conflict between characteristic directions
between the supersonic upstream flow, which is per-
fectly upwinded by the flow solver, and the subsonic
shock layer, where the acoustic characteristics approx-
imated as discrete waves. A second contributor to the
lack of robustness is the local scope of the adaption
strategy. The scheme is intentionally local to be syner-
gistic with the flow solver which has compact support,
sharing the same software data structures and loop
controls. The local scope also is desirable for paral-
lel processing. However, a larger stencil, an implicit
scheme, or an adjoint equation criteria may be neces-
sary to provide sufficient smoothness at shocks.

Although heat transfer is a variable of primary in-
terest for aerothermodynamics and may be a first
consideration for driving the adaption criteria, the
present results emphasize that for blunt-body hyper-
sonic aerothermodynamics both the bow shock loca-
tion and smoothness are critical to the computation of
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the fore body heat transfer rates. Due to the strength
of the hypersonic bow shock, discrete jumps in shock
position from one node to another produce significant
pressure disturbance waves and entropy variations that
strongly affect the flow field in the subsonic bubble and
overwhelm more subtle adaption within the boundary
layer.

To summarize, the present adaption techniques do
not significantly improve the solutions, the adaption
effectiveness is not consistent, and the solutions dis-
play a lack of robustness. Point deletion works the
best, but is risky if applied too aggressively. Uniform
refinement is both simpler and more reliable than the
solution adaptive strategy embodied by the present
method.
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